If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-60x-1800=0
a = 6; b = -60; c = -1800;
Δ = b2-4ac
Δ = -602-4·6·(-1800)
Δ = 46800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{46800}=\sqrt{3600*13}=\sqrt{3600}*\sqrt{13}=60\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-60\sqrt{13}}{2*6}=\frac{60-60\sqrt{13}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+60\sqrt{13}}{2*6}=\frac{60+60\sqrt{13}}{12} $
| 50=k*7 | | X-14=9x+15 | | 1+2c=9 | | 7/6=x+4/8 | | 3/x=1/4 | | 4x+48=9x+8 | | 6+28x=131 | | 6/n=12/8 | | 7(g-82)=49 | | -a1=15 | | 8x+12=-4x+32 | | 12m-18=3m+27 | | X+(27+x)+(-34+4*x)=1181 | | 9x^2+20x+31=7x+3x-5 | | 7/30x=x-2.3 | | (3x-4)^2=1-x(x+5) | | 2/3n=162/3 | | 4=x/8-4 | | x/6=17/13 | | 24x-13=-2(12+16) | | |-10v+8|=88 | | 4x=2x-5=7x-1 | | a-8=73 | | 4x^2-29x+31=x^2-3x-4 | | (4x+7)/9=3/(7/x) | | (4x-1)-5x=37 | | 8t+3=12 | | 23/30*x=2.3 | | 8j–9=5j | | -13.8=-1.3+y/5 | | 3y÷10-4=11 | | 3x+1=(x-1)=4 |